Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.851
Filtrar
1.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593587

RESUMEN

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Bases de Schiff/farmacología , Bases de Schiff/química , Resistencia a Múltiples Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico
2.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611964

RESUMEN

Two new phenylspirodrimanes, stachybotrins K and L (1 and 2), together with eight known analogues (3-10), were isolated from deep-sea-derived Stachybotrys sp. MCCC 3A00409. Their structures were determined by extensive NMR data and mass spectroscopic analysis. Absolute configurations of new compounds were determined through a comparison of their circular dichroism (CD) spectra with other reported compounds. The possible reversal effects of all compounds were assayed in the resistant cancer cell lines. Stachybotrysin B (8) can reverse multidrug resistance (MDR) in ABCB1-overexpression cells (KBv200, Hela/VCR) at the non-cytotoxic concentration. Doxorubicin accumulation assay and molecular-docking analysis reveal that the mechanism of its reversal MDR effect may be related to the increase in the intracellular concentration of substrate anticancer drugs.


Asunto(s)
Stachybotrys , Humanos , Bioensayo , Dicroismo Circular , Células HeLa , Resistencia a Múltiples Medicamentos
3.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557176

RESUMEN

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Quimioterapia Combinada , Línea Celular Tumoral
4.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633170

RESUMEN

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Asunto(s)
Salmonella enterica , Animales , Salmonella arizonae , Patos , Egipto , Escherichia coli , Antibacterianos/farmacología , Staphylococcus , Resistencia a Múltiples Medicamentos
5.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498238

RESUMEN

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacología , Resistencia a Antineoplásicos/genética , Proteína p53 Supresora de Tumor , Resistencia a Múltiples Medicamentos/genética , Apoptosis , Línea Celular Tumoral , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacología , Proteínas de Transporte Vesicular/uso terapéutico
6.
Sci Rep ; 14(1): 7176, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531847

RESUMEN

Overuse of antibiotics during coronavirus disease 2019 (COVID-19) in an attempt to reduce COVID-19 mortality in the short term may have contributed to long-term mortality from antimicrobial resistance (AMR). The aim of this study was to evaluate the impact of the COVID-19 pandemic on AMR in Egypt and map the distribution of multidrug-resistant (MDR) and extensive drug-resistant (XDR) across Egypt. Through a multicenter cross-sectional study 2430 culture results were collected in 2019 and 2022 pre and post-COVID-19 pandemic in Egypt, including 400 Klebsiella pneumoniae, 760 Escherichia coli, 650 Acinetobacter baumannii, and 620 Methicillin-resistant staphylococcus aureus (MRSA) culture results. MDR and XDR culture results distribution across Egypt was highlighted through the geographic information system. Mixed effect logistic regression models and sub-group analysis were performed according to the type of specimens to test the impact of COVID-19 on resistance. Adjusted analysis demonstrated K. pneumoniae resistance has increased against quinolones and carbapenems (P < 0.001). Resistance of E. coli has increased significantly against imipenem and meropenem. While E.coli susceptibility has increased to cefoxitin, levofloxacin, and ciprofloxacin. A. baumannii resistance has increased more than double against ceftazidime, cefepime, and piperacillin-tazobactam (P < 0.001). MRSA reserved its susceptibility to vancomycin and linezolid. MDR K. pneumoniae and A. baumannii have increased post-COVID-19 from 67% to 94% and from 79% to 98%, respectively (P < 0.001). XDR K. pneumoniae and A. baumannii have increased from 6% to 46%, and from 47% to 69%, respectively (P < 0.001). COVID-19 has changed the profile of AMR in Egypt so that urgent action is required to mitigate this threat and preserve our capacity to face infections in future decades.


Asunto(s)
COVID-19 , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Estudios Transversales , Egipto , Escherichia coli , Pandemias , Farmacorresistencia Bacteriana , Resistencia a Múltiples Medicamentos , Pruebas de Sensibilidad Microbiana
7.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38537223

RESUMEN

Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/farmacología , Transportadoras de Casetes de Unión a ATP/uso terapéutico , Resistencia a Múltiples Medicamentos , Transporte Biológico , Neoplasias/tratamiento farmacológico , Homeostasis
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542082

RESUMEN

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Asunto(s)
Calcio , Resistencia a Múltiples Medicamentos , Calcio/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral
9.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38518871

RESUMEN

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Paclitaxel , Neoplasias Ováricas/patología , Atovacuona/farmacología , Atovacuona/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Metabolismo Energético , Adenosina Trifosfato/metabolismo
10.
Eur J Med Chem ; 269: 116294, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508119

RESUMEN

Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.


Asunto(s)
Alcaloides , Productos Biológicos , Urocordados , Animales , Relación Estructura-Actividad , Resistencia a Múltiples Medicamentos , Mitocondrias , Urocordados/química , Alcaloides/química
11.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479483

RESUMEN

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Asunto(s)
Antimaláricos , Plasmodium yoelii , Animales , Ratones , Antimaláricos/química , Éter/farmacología , Relación Estructura-Actividad , Resistencia a Múltiples Medicamentos , Éteres de Etila/farmacología , Éteres/farmacología
12.
BMC Microbiol ; 24(1): 74, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454332

RESUMEN

OBJECTIVE: Multi-drug resistance (MDR) has notably increased in community acquired uropathogens causing urinary tract infections (UTIs), predominantly Escherichia coli. Uropathogenic E. coli causes 80% of uncomplicated community acquired UTIs, particularly in pre-menopausal women. Considering this high prevalence and the potential to spread antimicrobial resistant genes, the current study was conducted to investigate the presence of clinically important strains of E. coli in Pakistani women having uncomplicated cystitis and pyelonephritis. Women belonging to low-income groups were exclusively included in the study. Seventy-four isolates from urine samples were processed, phylotyped, and screened for the presence of two Single Nucleotide Polymorphisms (SNPs) particularly associated with a clinically important clonal group A of E. coli (CgA) followed by antibiotic susceptibility testing and genome sequence analysis. RESULTS: Phylogroup B2 was most prevalent in patients and 44% of isolates were positive for the presence of CgA specific SNPs in Fumarate hydratase and DNA gyrase subunit B genes. Antibiotic susceptibility testing showed widespread resistance to trimethoprim-sulfamethoxazole and extended-spectrum beta-lactamase production. The infection analysis revealed the phylogroup B2 to be more pathogenic as compared to the other groups. The genome sequence of E. coli strain U17 revealed genes encoding virulence, multidrug resistance, and host colonization mechanisms. CONCLUSIONS: Our research findings not only validate the significant occurrence of multidrug-resistant clonal group A E. coli (CgA) in premenopausal Pakistani women suffering from cystitis and pyelonephritis but also reveal the presence of genes associated withvirulence, and drug efflux pumps. The detection of highly pathogenic, antimicrobial-resistant phylogroup B2 and CgA E. coli strains is likely to help in understanding the epidemiology of the pathogen and may ultimately help to reduce the impact of these strains on human health. Furthermore, the findings of this study will particularly help to reduce the prevalence of uncomplicated UTIs and the cost associated with their treatment in women belonging to low-income groups.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Pielonefritis , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Femenino , Escherichia coli , Infecciones por Escherichia coli/diagnóstico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pakistán/epidemiología , Infecciones Urinarias/diagnóstico , Resistencia a Múltiples Medicamentos , Cistitis/tratamiento farmacológico
13.
Mol Biol Rep ; 51(1): 379, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429605

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a form of kidney cancer characterized by dysregulated angiogenesis and multidrug resistance. Hypoxia-induced tumor progression plays a crucial role in ccRCC pathogenesis. Beta-hydroxybutyrate (BHB) and quercetin (QCT) have shown potential in targeting angiogenesis and drug resistance in various cancer types. This study investigates the combined effects of BHB and QCT in hypoxia-induced Caki-1 cells. METHODS: Caki-1 cells were subjected to normoxic and hypoxic conditions and treated with BHB, QCT, or a combination of both. Cell-viability was assessed using the MTT assay, and mRNA expression levels of key angiogenesis-related genes (HIF-1α/2α, VEGF, Ang-1, Ang-2, and MDR4) were quantified through real-time PCR during 24 and 48 h. RESULTS: BHB and QCT treatments, either alone or in combination, significantly reduced cell-viability in Caki-1 cells (p < 0.05). Moreover, the combined therapy demonstrated a potential effect in downregulating the expression of angiogenesis-related genes and MDR4 in hypoxia-induced cells, with a marked reduction in HIF-1α/2α, VEGF, Ang-1, and MDR4 expression (p < 0.05). The expression of Ang-2 increases significantly in presence of BHB combined QCT treatment. CONCLUSION: This study highlights the promising potential of a combination therapy involving BHB and QCT in mitigating angiogenesis and MDR4 expression in hypoxia-induced ccRCC cells. These findings support further investigation into the underlying mechanisms and warrant clinical studies to evaluate the therapeutic value of this combined treatment for ccRCC patients. This research provides new insights into addressing the challenges posed by angiogenesis and drug resistance in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Ácido 3-Hidroxibutírico , Quercetina/farmacología , Quercetina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , 60489 , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Hipoxia , Resistencia a Múltiples Medicamentos
14.
J Med Chem ; 67(6): 4560-4582, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502936

RESUMEN

Inspired by the structure of dysoxylactam A (DLA) that has been demonstrated to reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) effectively, 61 structurally simplified cyclolipopeptides were thus designed and synthesized via an effective method, and their reversing P-gp-mediated MDR potentials were evaluated, which provided a series of more potent analogues and allowed us to explore their structure-activity relationship (SAR). Among them, a well-simplified compound, 56, with only two chiral centers that all derived from amino acids dramatically reversed drug resistance in KBV200 cells at 10 µM in combination with vinorelbine (VNR), paclitaxel (PTX), and adriamycin (ADR), respectively, which is more promising than DLA. The mechanism study showed that 56 reversed the MDR of tumor cells by inhibiting the transport function of P-gp rather than reducing its expression. Notably, compound 56 effectively restored the sensitivity of MDR tumors to VNR in vivo at a dosage without obvious toxicity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Lipopéptidos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP , Doxorrubicina/farmacología , Línea Celular Tumoral
15.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38493478

RESUMEN

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/metabolismo , Cromatina , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Resistencia a Múltiples Medicamentos , Neoplasias de la Mama/genética
16.
Sci Rep ; 14(1): 7589, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38555345

RESUMEN

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Asunto(s)
Antineoplásicos , Oxígeno , Humanos , Células MCF-7 , Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/farmacología
17.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514187

RESUMEN

RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Código de Histonas , Histonas/genética , Histonas/metabolismo , Resistencia a Múltiples Medicamentos
18.
Int J Pharm ; 654: 123970, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447779

RESUMEN

Multidrug resistance (MDR) poses a significant impediment to the efficacy of chemotherapy in clinical settings. Despite Paclitaxel (PTX) being designated as the primary pharmaceutical agent for treating recurrent and metastatic breast cancer, the emergence of PTX resistance frequently results in therapeutic shortcomings, representing a substantial obstacle in clinical breast cancer management. In response, we developed a delivery system exhibiting dual specificity for both tumors and mitochondria. This system facilitated the sequential administration of small interfering B-cell lymphoma-2 (siBcl-2) and PTX to the tumor cytoplasm and mitochondria, respectively, with the aim of surmounting PTX resistance in tumor cells through the activation of the mitochondrial apoptosis pathway. Notably, we employed genetic engineering techniques to fabricate a recombinant ferritin containing the H-subunit (HFn), known for its tumor-targeting capabilities, for loading siBcl-2. This HFn-siBcl-2 complex was then combined with positively charged Triphenylphosphine-Liposome@PTX (TL@PTX) nanoparticles (NPs) to formulate HFn/siBcl-2@TL/PTX. Guided by HFn, these nanoparticles efficiently entered cells and released siBcl-2 through the action of triphenylphosphine (TPP)-mediated "proton sponge," thereby precisely modulating the expression of Bcl-2 protein. Simultaneously, PTX was directed to the mitochondria through the accurate targeting of TL@PTX, synergistically initiating the mitochondrial apoptosis pathway and effectively suppressing PTX resistance both in vitro and in vivo. In conclusion, the development of this dual-targeting delivery system presents a promising therapeutic strategy for overcoming PTX resistance in the clinical treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Compuestos Organofosforados , Humanos , Femenino , Paclitaxel , Resistencia a Antineoplásicos , Mitocondrias , Neoplasias de la Mama/patología , Resistencia a Múltiples Medicamentos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos
19.
Eur J Pharm Biopharm ; 198: 114267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514020

RESUMEN

Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Múltiples Medicamentos , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Antineoplásicos/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Preparaciones Farmacéuticas , Neoplasias/tratamiento farmacológico
20.
Carbohydr Polym ; 332: 121897, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431408

RESUMEN

Cancer multidrug resistance (MDR) dramatically hindered the efficiency of standard chemotherapy. Mitochondria are highly involved in the occurrence and development of MDR; thus, inducing its malfunction will be an appealing strategy to treat MDR tumors. In this paper, a natural polysaccharides-based nanoplatform (TDTD@UA/HA micelles) with cell and mitochondria dual-targeting ability was facilely fabricated to co-deliver ursolic acid (UA) and doxorubicin (DOX) for combinatorial MDR therapy. TDTD@UA/HA micelles featured a spherical morphology, narrow size distribution (∼140 nm), as well as favorable drug co-loading capacity (DOX: 8.41 %, UA: 9.06 %). After hyaluronic acid (HA)-mediated endocytosis, the lysosomal hyaluronidase promoted the degradation of HA layer and then the positive triphenylphosphine groups were exposed, which significantly enhanced the mitochondria-accumulation of nano micelles. Subsequently, DOX and UA were specifically released into mitochondria under the trigger of endogenous reactive oxygen species (ROS), followed by severe mitochondrial destruction through generating ROS, exhausting mitochondrial membrane potential, and blocking energy supply, etc.; ultimately contributing to the susceptibility restoration of MCF-7/ADR cells to chemotherapeutic agents. Importantly, TDTD@UA/HA micelles performed potent anticancer efficacy without distinct toxicity on the MDR tumor-bearing nude mice model. Overall, the versatile nanomedicine represented a new therapeutic paradigm and held great promise in overcoming MDR-related cancer.


Asunto(s)
Micelas , Neoplasias , Humanos , Animales , Ratones , 60576 , Ácido Hialurónico/farmacología , Dextranos/metabolismo , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Múltiples Medicamentos , Polímeros/metabolismo , Células MCF-7 , Mitocondrias , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...